
HISTOKATFUSION.
IMAGE REGISTRATION FOR THE ACROBAT CHALLENGE.

Daniel Budelmann Nick Weiss Stefan Heldmann Johannes Lotz

Fraunhofer MEVIS
Lübeck, Germany

corresponding author: daniel.budelmann@mevis.fraunhofer.de

August 26, 2022

Image registration is aiming to find a transformation between at least two images, so that corresponding objects appear
at the same position. This document describes a registration method submitted to the ACROBAT challenge1 and is an
extension of an earlier text [1].

1 Tissue Segmentation

Our image registration method is based on a Newton-type optimization and therefore relies on a good initial guess to
converge quickly. As an initial guess, a robust rough alignment of the tissue sections is required. In many image pairs
in the ACROBAT data (as well as in many real-world datasets), control tissue is present in only one of the two images
which makes finding the initial alignment difficult.

We extended a registration method that was previously applied in the ANHIR challenge by an additional tissue
foreground segmentation step that aims at masking the images such that only tissue present in both images is taken into
account.

1.1 Step 1: Foreground segmentation

The foreground segmentation is based on the implementation published by Bándi et al. in [2]. We trained the provided
network (FCNN_C with a spacing of 8µm ≈ 1.25x magnification) on seven slides of the authors’ public training subset, on
six additional slides from the ACROBAT training data (slides 1_HE, 105_KI67, 106_HER2, 119_PGR, 156_PGR,
168_ER), and one internal image (SynD_3_001) to further improve the segmentation performance.

1.2 Step 2: Choosing relevant tissues

From each of the resulting tissue masks, the largest interconnected tissue parts are selected.

We assume that there are a multitude of smaller (control) tissue parts that do not necessarily have a correspondence in
the other slide of the pair. Only the few large tissue parts that are present on both images should be considered for the
initial registration.

To select the relevant tissue parts, the separate masks in each image are sorted by their surface area and the differences
between the areas are computed. We then identify the largest gap in area sizes that divides the tissue parts in a large and
a small group. Only the tissue parts in the large-area group are kept for further processing. Additional tissue parts are
included to obtain the same number of tissue parts in both images of a pair.

The resulting masked images are used for the pre-alignment step of the image registration.

1https://acrobat.grand-challenge.org
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2 Image Registration

Each image pair is registered twice, once with the H&E-image as reference (fixed) image and once with the IHC image
as reference image. Both results are stored and the final result is determined by comparing the overlap of the deformed
masks from the foreground segmentation.

The registration method consists of 1) a robust pre-alignment, 2) an affine registration computed on coarse resolution
images, and 3) a curvature-regularized deformable registration. The method is based on the variational image registration
framework first described by Fischer and Modersitzki [3, 4] which has been applied to many clinical fields from histology
[5] to radiology [6, 7].

Given a reference image R : R2 → R and a template image T : R2 → R, the goal of image registration is to find a
reasonable spatial transformation y : R2 → R2 such that R(x) ≈ T (y(x)), i.e., R and the deformed template T ◦ y are
similar in an adequate sense.

Following [4], we formulate the image registration as the optimization problem J(R, T, y)
y→ min of an appropriate

objective function J with respect to the desired spatial transformation. A key component of the objective function is
a so-called distance or image similarity measure that quantifies the quality of the alignment. We use the Normalized
Gradient Fields (NGF) distance measure [8] as it has been shown to be robust to different stains and is suitable for
multi-modal image registration of histological images [9]. For the discretization, 2D images with extents n1-by-n2

are assumed, correspondingly consisting of N = n1 · n2 pixels with uniform size h ∈ R in each dimension and pixel
centers x1, ...,xN ; xi ∈ R2. The NGF distance measure is given by

NGF(R, T, y) =

h2

2
·

N∑
i=1

1−
(

⟨∇T (y(xi)),∇R(xi)⟩ε
∥∇T (y(xi))∥ε ∥∇R(xi)∥ε

)2

with ⟨x,y⟩ε = x⊤y + ε2, ∥x∥ε :=
√
⟨x,x⟩ε, and the edge parameter ε, which controls the sensitivity to edges in

contrast to noise. This image distance becomes minimal if intensity gradients and edges, respectively, are aligned and
which therefore leads to the alignment of morphological structures.

The NGF distance measure is used in all three steps of the registration pipeline: Pre-alignment, affine registration,
and deformable (non-linear) registration. In addition, we use a multilevel optimization scheme that starts with the
registration of images at low resolution levels and then refines the transformation to higher image resolutions to
reduce the risk of converging too early to local minima and to speed up the optimization process [10]. The per-level
optimization is performed using a Gauss-Newton type (affine registration) and L-BFGS quasi-Newton (deformable
registration) method, see e.g. [4] or [11, 12] for a more detailed discussion and additional strategies.

All of the three following registration steps rely on the edge parameter ε, the number of levels Nlevel of the image
pyramid, and the image resolution at the finest level. The parameters are set independently for each step and such that
the registration error is minimal and the deformation grid is regular in the sense that it is not folded in the image domain.
These parameters are shown in Table 1.

2.1 Step 1: Automatic rotation alignment (ARA)

Before histological images are scanned, the tissue is cut, preprocessed, and stained in a pathology lab.

After this manual process, neighboring tissue slices can end up in arbitrary positions on the object slide (such as upside
down or turned in various ways). In general, no assumptions can be made on the initial tissue positioning and—in a first
step—we aim to find a rigid alignment, correcting for global translation and global rotation.

The NGF distance measure is based on structural changes expressed through the image gradient and therefore, color
information is of limited value. To reduce the amount of image data to be handled, all images are converted from color
to gray scale and inverted to obtain a black background while loading from disk.

Automatic Rotation Alignment (ARA) first determines the center of mass [13] of both images, using the gray values of
the pixels as the weights. The relevant, corresponding tissue parts are masked according to the segmentation procedure
in Section 1.

Let (t1, t2) be the vector pointing from the center of mass of the reference image to the center of mass of the template
image, and let ϕk = 2π(k − 1)/(Nrotations − 1), k = 1, . . . , Nrotations be equidistant rotation angles sampling the
interval [0, 2π). For each angle, a rigid registration is computed with initial guess (φ, t1, t2). Among all Nrotations rigid
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Registration step Parameter values

Step 1: Pre-Alignment
No. of levels Nlevel 5
No. of rotations Nrot 32
image resolution (µm

px ) approx. 128
image size (px) approx. 300×200
NGF ε 0.1
Step 2: Affine
image resolution (µm

px ) approx. 4
image size (px) approx. 9000×6000
No. of levels Nlevel 8
NGF ε 0.1
Step 3: Deformable
image resolution (µm

px ) approx. 2
image size (px) approx. 18000×12000
No. of levels Nlevel 8
NGF ε 0.1
regularizer weight α 0.1
control point grid m 1025x1025 nodes
Table 1: Parameters used in the registration pipeline.

registration results, the minimizer (ϕ∗, t∗1, t
∗
2) with the smallest image distance is selected as an initial guess for the

subsequent affine registration.

2.2 Step 2: Affine registration

In a second step, again an NGF-based image registration is computed based on the original, unmasked images. To
allow for additional degrees of freedom, the registration is optimized with respect to an affine transformation yaffine and
based on a finer image resolution. The resulting transformation is then used as initial guess for a subsequent deformable
registration.

2.3 Step 3: Deformable registration

The final step is a deformable image registration. Here, the transformation y is given by

y(x) = x+ u(x)

with so-called displacement u : R2 → R2, u = (u1, u2) [4].

In contrast to an affine registration, the deformation is not restricted to a particular parameterizable deformation
model and the nonlinear transformation is controlled by introducing a regularization term into the objective function
that measures the deformation energy and penalizes unwanted transformations. Here we use the so-called curvature
regularization, which penalizes second-order derivatives of the displacement [14] and which has been shown to
work very well in combination with the NGF distance measure [6, 7]. As with the NGF distance, we evaluate the
displacements in the pixel centers x1, . . . ,xm with uniform grid spacing h and use finite differences to approximate the
derivatives. Thus, the discretized curvature regularizer is defined as

CURV(y) =
h2

2

m∑
i=1

|∆hu1(xi)|2 + |∆hu2(xi)|2

where ∆h is the common 5-point finite difference approximation of the 2D Laplacian ∆ = ∂xx + ∂yy with Neumann
boundary conditions. In summary, for deformable registration, we minimize the objective function

J(R, T, y) := NGF(R, T, y) + αCURV(y) → min,

with respect to the deformation y. The parameter α > 0, is a regularization parameter that controls the smoothness of
the computed deformation. The parameter α is chosen manually to achieve a smooth deformation and avoid topological
changes (lattice folds), while being flexible enough to correct for local changes that improve image similarity. The
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resolution of the control point grid is independent of the image resolution and is typically chosen to be coarser than the
image resolution (see also Table 1). A higher number of grid points allows for a more accurate representation of local
deformations. Linear interpolation is used to evaluate the deformation between its grid nodes.

3 Selection of the superior registration result

After registering each image pair twice, once with each image as reference image, the better of the two registrations is
determined by comparing the alignment of the masks generated by the foreground segmentation.

The alignment quality is computed by the sum of squared differences (SSD) of the reference and the deformed template
mask. Deformations with foldings determined by negative parts in the jacobi determinant are rejected beforehand.
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